Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA.
نویسندگان
چکیده
Norfloxacin is a nalidixic acid analogue and one of the most potent DNA gyrase inhibitors. To study the mechanism of this important class of inhibitors, the binding of [3H]norfloxacin to gyrase and substrate DNA was measured. We found that, contrary to prior belief, norfloxacin does not bind to gyrase but instead binds to DNA. This was demonstrated by both equilibrium dialysis and membrane filtration techniques. Binding to ColE1 and pBR322 plasmids showed a primary process that is saturated at a norfloxacin concentration about equal to its supercoiling Ki (1.8 X 10(-6) M) and is followed by weaker secondary binding. The apparent Kd values are 1 X 10(-6) M for both plasmids. The molar binding ratio at this initial saturation point is extremely low: only 4 X 10(-4) norfloxacin per nucleotide for both plasmids. The binding of norfloxacin to DNA plasmids is nonintercalative, as shown by the fact that the drug binds preferentially to single-stranded DNA rather than to double-stranded DNA. The binding is reduced at high salt concentration, has a pH optimum between 4.5 and 6.5, and does not require divalent ions. The binding affinities of other nalidixic acid analogues were estimated by an indirect competition method. The calculated apparent Kd values of these analogues correlate well with their Ki values, providing strong evidence that the binding affinity of the drug to DNA determines biological potency.
منابع مشابه
Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملMechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme.
A target protein for nalidixic and oxolinic acids in Escherichia coli, the nalA gene product (Pnal), was purified to homogeneity as judged by gel electrophoresis, using an in vitro complementation assay. It is a dimer of identical 110,000-dalton subunits. A polypeptide of this molecular weight is uniquely induced by a lambda nalA transducing phage, thereby showing that the purified Pnal is a pr...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملDual-Target Anticancer Drug Candidates: Rational Design and Simulation Studies
This study aims to design some dual-target anticancer candidates, capable to act as an alkylating agent as well as a thymidylate synthase (TS) inhibitor. The designed scaffold is a combination of nucleobase, amino acid and aziridine structures. The candidates are docked into TS and three DNA double strand structures and evaluated based on their binding interaction energies and ligand efficienci...
متن کاملNalidixic acid resistance: a second genetic character involved in DNA gyrase activity.
ATP-dependent DNA supercoiling catalyzed by Escherichia coli DNA gyrase was inhibited by oxolinic acid, a compound similar to but more potent than nalidixic acid and a known inhibitor of DNA replication in E. coli. The supercoiling activity of DNA gyrase purified from nalidixic acid-resistant mutant (nalA(R)) bacteria was resistant to oxolinic acid. Thus, the nalA locus is responsible for a sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 82 2 شماره
صفحات -
تاریخ انتشار 1985